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The model developed in Part 1 (Lister 1994) for the solidification of hot fluid flowing 
in a thin buoyancy-driven layer between cold solid but freely deformable boundaries 
is extended to study the case of continual release of fluid. In this model lubrication 
theory was applied to reduce the equations of mass and heat conservation to a 
kinematic-wave equation and an advection-diffusion equation, which were coupled by 
the rate of solidification. The equations allow the source flux to be specified, and the 
cases of constant input and of flux proportional to a power of time are considered here. 
The structure of the flow differs significantly from the case of constant-volume release 
considered in Part 1. The advective resupply of heat prevents the flow from solidifying 
completely at the source and, if the initial fluid temperature is greater than the melting 
temperature of the solid, will in fact lead to rapid melting near the source. A 
perturbation expansion is used to describe the development of thermal boundary layers 
at the flow margins and the initial self-similar extension of the zone of melting. As the 
flow propagates beyond its thermal entry length, the fluid temperature falls to the 
liquidus value and melting gives way to solidification. At large times nearly all of the 
fluid supplied solidifies against the margins of the flow but, provided the source flux 
decreases less rapidly than t - l i 2 ,  sufficient reaches the nose of the flow that the flow 
continues to increase in length indefinitely. Analytic solutions are given for this long- 
time regime showing, for example, that the length increases asymptotically like for 
constant-flux input. The theoretical solutions, which are calculated by a combination 
of analytic and numerical methods, may be used to describe the propagation of a dyke 
fed by a large body of magma through the Earth’s lithosphere or the flow of lava down 
the flanks of a volcano during an extensive period of eruption. 

1. Introduction 
In Part 1 (Lister 1994) we posed the general question: how far can a hot fluid flow 

into cold surroundings before it solidifies and flow ceases? The question is highly 
pertinent to the transport of hot magma through fissures, or dykes, in the Earth’s cold 
lithosphere and to the flow of lavas on the Earth’s surface. Previous dynamical analyses 
(Spence & Turcotte 1990; Lister 1990a, b) show that the flow of magma in dykes can 
be described as buoyancy-driven flow between freely deformable boundaries and in 
Part 1 the equations governing the thermal evolution and solidification of two- 
dimensional flow in a flexible-walled channel were derived. The equations were solved 
for the case of an instantaneous line release of constant volume and it was shown that 
such a flow will come to rest and solidify completely in a finite distance, which was 
evaluated. In this paper we derive solutions for the case of continual input and show 
that propagation of the flow can continue indefinitely, though at a rate which is much 
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reduced from the rate without solidification. Though the equations differ only in the 
source-flux boundary condition, the structure of the solutions for continual input is 
found to be quite different from that for instantaneous release and consequently 
requires new analysis. 

Many early studies of the solidification of dykes (see the review by Delaney 1987) 
have been based on solutions for unsteady heat conduction from a stationary body of 
magma brought instantaneously into contact with cooler host rock. For example, in 
order to obtain a rough estimate of the distance propagated before solidification, the 
unidirectional solidification time for a stationary constant-thickness slab of fluid was 
multiplied by the mean velocity of flow corresponding to the original width. The 
dynamic coupling between the effects of solidification on the flow and of advection of 
heat by the flow on the solidification was first estimated by Delaney & Pollard (1982). 
They approximated flow in a rigid-walled conduit by Poiseuille flow with a spatially 
constant pressure gradient (which violates mass conservation if the channel width 
varies) and neglected the effects of latent heat. The thermal evolution and migration of 
the solidification isotherm was then calculated using a truncated series expansion of the 
thermal boundary-layer equations (Leveque 1928 ; Newmann 1969). Bruce & Huppert 
(1989, 1990) derived a more sophisticated approximation for flow in a finite-length 
rigid-walled channel by assuming that the flow rate is governed only by the time- 
dependent width at the top of the channel. The thermal calculation, which included the 
effects of latent heat, was based on a quasi-steady analysis of slowly varying linear 
shear in the thermal boundary layers on the walls. Both these analyses of flows in a 
rigid-walled channel concluded that flow would eventually cease if the conduit 
exceeded a critical length. By contrast, we show below that flow in a flexible-walled 
channel can continue indefinitely unless the source flux abates. 

A model of flow in a flexible-walled channel was developed in Part 1 and the reader 
is referred there for details of the derivation and the conditions under which the 
underlying assumptions are valid. Nevertheless, it is hoped that the present paper can 
be read independently and accordingly the dimensionless form of the governing 
equations is summarized below for reference in the subsequent analysis. 

The velocity u is given by Poiseuille flow coupled to the lateral displacement of the 
channel walls by conservation of mass. Hence 

u = (-wwzx,;(w2-x2)) (0 d x < w), (1.la) 

w,+w2w,+ct = 0 (1.2) 

u = (- wzw,, 0) (w d x), (1.1b) 

(together with symmetry in x = 0), where the fluid region occupies 1x1 < w(z,  t )  for 
0 d z d zN( t ) ;  x is the cross-stream coordinate, z the vertical coordinate, z = 0 the level 
of release, z = z,(f) the nose of the flow and ct(z, t)  the local rate of solidification. The 
high-PCclet-number thermal transport is governed by advection and cross-stream 
diffusion subject to Stefan boundary conditions at the walls and to far-field boundary 
conditions. Thus 

0,+u.v0  = 0,,, (1.3) 

sc, + [0,(w, z,  t)]' = 0, 

0(w, 2, t )  = 0, 

0(x,  z ,  t )  + 0 (x + a), (1.6) 
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where the parameters ( 1 . 7 ~ )  

(1.7b) 

are the Stefan number and dimensionless solidification temperature, T, and T, are the 
(dimensional) initial temperatures of fluid and solid, TL is the liquidus temperature, L 
is the latent heat and C, the specific heat capacity. Heat and mass conservation at the 
nose of the flow show that 

dz,/dt = $w$, (1 4 
c(z,, t )  = 0, (1.9) 

o(x, zN7 t> = o(x(x),  zh', t, ( w N i d 3  < < wN), (1.10 a) 
e(x, zN, t ,  = 0, (WN < 4, (1.10 b) 

(1.11) 
where Z(x) is the positive root of 

xz + xx + x2 = w;,. 

The initial and source conditions, which differ from Part 1, are prescribed by 

ZN(0) = 0, 
O ( X ,  0,  t )  = 1 (x < w(0, t)), 

(1.12) 
(1.13) 

w(0, t )  = t", (1.14) 

where a = 0 corresponds to the important case of constant-flux release. The non- 
dimensionalization is defined by equations (2.14) and (2.15) of Part 1, where the 
reference width h, is chosen to produce (1.14). The z-scale is the thermal entry length 
Peh,, where the Peclet number satisfies Pe 9 1. 

In $2 we solve (1.1)-( 1.14) for the simplest case of constant-flux input at the liquidus 
temperature (a  = 0, 0 = 1). It is shown that at short times zN K t and at long times 
zN K tliz. Analytic solutions are found in each regime and the full evolution of the flow 
is calculated by a method of characteristics. Unlike the cases of constant-volume 
release and of continual release above the liquidus temperature, no special treatment 
is needed to obtain the solution near the origin of the flow. In $ 3  we extend our analysis 
to constant-flux input above the liquidus temperature (0 < 1). We find that a zone of 
melting extends from the source and grows like t3I2 until it reaches the thermal entry 
length. Beyond this distance the fluid has lost its superheat and the flow is given by a 
rescaling of the 0 = 1 solution. The case of non-constant input is considered in $4 and 
a condition for indefinite propagation derived. The results are discussed in $5. 

2. Constant-flux input at the liquidus temperature 
We consider the solution of (1.1)-( 1.14) for cz = 0 and 0 = 1. Since the fluid source 

temperature at z = 0 is equal in this case to the temperature at the boundaries x = k w, 
the temperature of the fluid region remains uniform and equal to the liquidus value 
0 = 1. The temperature of the solid at a given height is zero until the nose of the flow 
reaches that height at time t,(z). From then on, as shown in Part 1, the temperature 
in the solid is given by the usual error-function solution for one-dimensional 
solidification of a liquid placed in contact with a semi-infinite cold solid (Carslaw & 
Jaeger 1959), but with a lateral displacement given by (1.1 b).  Thus 

c, = h ( S ) / ( t -  t J12  (2.1) 
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for t > t,, where 
STPA eh2 erfc ( - A )  = 1. 

The mass transport of the flow is then given by substitution of (2.1) into (1.2). In order 
to include the possibility of turbulent flow, for which the mass flux is proportional to 
W n + ~  with n < 2 (Hirs 1974), we generalize (1.2) and (1.8) to 

Wt + W"W, = - h/[t - fAV(2)]1'2,  

dz,/dt = wL/(n + 1) 

(Lister 1994). The departure of a turbulent velocity profile from (1.1 a) is immaterial to 
the thermal solution because the fluid temperature is constant if 0 = 1. 

The remaining parameter h is scaled out of the problem by defining 

2 = zA2, W = W ,  T = th2. (2.5) 
Equation (2.3) is most easily solved by the method of characteristics, which we label 
by the variable q5. Hence 

(2.6a, b) 

Z ( T , ; $ )  = 0, W(T, ;$)  = 1, (2.6c, d )  

where T, is the time at which the characteristic Z ( T ;  q5) crosses 2 = 0. Clearly, 

2.1. Short-time expansion 
We seek a series solution of (2.6) at short times. It is convenient to define the label of 
the characteristics by 4' = TN- T,, where TN(q5) is the time at which the character- 
istic $ reaches the nose of the flow. A stretched time variable is defined by 
T($) = (T-  T,)/$' in order to fix the source of the flow at T = 0 and the nose at  7 = 1. 
Hence, we write 

in the integrand of (2.7). 
We pose expansions 

T -  TN(Z) = q 5 ' ( ~ -  1) + TN($)- TN(Z) (2.8) 

q5-2z(7;$) = Z*(7;$)  = z0(7)+$6z1(7)+ ..., 
q5-'TN(q5) = Tg = (n+l)(T,+$T,+ ...), 

( 2 . 9 ~ )  
(2.9 b) 

&(Z) = z 1 ' 2 ( q 5 0 + q 5 1 2 1 / 2 + q 5 2 z +  ...) = $z*"2(q50+$,~2*~'~+$2$~z*+ ...) 
(2.9 c) 

for the unknowns Z(7;  q5), TN(q5) and the inverse q5N(Z) of ZN(q5). On substitution of 
the starred variables into (2.4), ( 2 . 6 ~ )  and (2.7), we obtain 
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(2.13) ,' ,' 
,' ," (2.11) 

0.001 IT 
0.01 0.1 1 10 I00 

T 
FIGURE 1. (u) The propagation of the nose of a constant-input laminar flow at the liquidus 
temperature (a  = 0, n = 2 and 0 = 1, solid curve) together with the first three short-time asymptotic 
approximations (2.1 lk(2.13) (dotted). The solution was determined by a modified method of 
characteristics some of which are shown dashed. (b)  The rate of propagation decreases steadily so that 
initial advance with Z ,  cc T (2.1 1) gives way to a long-time advance with Z,  cc T112. There is good 
agreement with the asymptotic solutions (2.13) and (2.18). 

and we also have the identity 
$ N ( W  ;#>I = 4. (2.1 0 c) 

The form of (2.10) shows that the scaling of the series expansions (2.9) in powers of q5 
is correct. The coefficients Zi(7), < and cjc are determined by solution at successive 
order. 

At leading order we obtain 

Z0(7) = 7, r, = 1, $o = 1, (2.1 1) 

which corresponds to the simple loss-less kinematic shock wave W =  1 in 
0 < 2 < 2, = T/(n + 1). The first effects of solidification occur at O(cj). We find from 
(2.11 a) that 

allowing the integrals in (2.10) to be easily evaluated. The O($) solutions are 

u - 1 + G($> - 7-dq5"ZI)/$2 = 4 1  - T )  + O(q5), 

Z1(7) = ijn1"(2 - 37 - 2( 1 - 7)3'2), = ijn1/2, = + I Z " ~ .  (2.12) 
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X 

FIGURE 2. The scaled width W (solid curves), the accumulated chill thickness C (dashed) and the 
width at the nose W, (long dashed) obtained from (2.4) and (2.6) as a function of vertical distance 
Z at times T = 0.25, 0.5, 1, 2 and 5. The effects of solidification are strongest near the nose where the 
temperature gradients are steep. 

Higher-order solutions are similarly easily calculated, though the algebra becomes 
rather tedious. The location of the nose can be found by reversion of the series 
T = TN(q5"Z]) to be 

z, =--- T 4n1/' ( - T )3 /2+  3n(n+1)-14( )'+o(TS/Z). (2.13) 
n + 1  3 n + l  n + l  

2.2. Numerical solution 
As might be expected, the short-time analysis shows that the solidification causes the 
propagation velocity to decrease with time, and the initial decrease has been evaluated 
above. The behaviour at moderate to long times is not obvious a priori. Naive guesses 
that the flow will propagate a finite distance before the nose solidifies completely or 
that some sort of steady state is established with propagation at a reduced but constant 
velocity are found to be incorrect. 

The general solution of (2.3) and (2.4) was determined by a fourth-order 
Runge-Kutta integration of (2.6) using for the discretization of TN(Z) a sequence of 
quadratic segments each of which was constrained to satisfy (2.4) at its endpoints. 
Further details of the numerical scheme are given in Part 1. The propagation of the 
nose of the flow together with some of the characteristics at early times is shown in 
figure 1 (a) for n = 2. The slope of the characteristics is 1 at Z = 0 and three times that 
of the frontal trajectory at their intersection. Continued integration shows that the 
length of the flow at large times is proportional to T1/' (figure 1 b). Thus W(Z,) and 
the rate of propagation are monotonically decreasing like T-l/' and never reach zero. 
The explanation of this result is deferred to the following section after derivation of the 
asymptotic solution for the long-time regime. In figure 2 we show the widths of the flow 
W and of the accumulated chill C at a succession of times. Though the width at the 
nose of the flow is monotonically decreasing, the width at any given location is 
monotonically increasing. 
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1 .o 

f 0.5 

0 1 2 

FIGURE 3. The asymptotic similarity solution (2.14) for the characteristic trajectory and width w at 
long times, where f is the scaled vertical coordinate and 7 is the sca€ed time variable along a 
characteristic. The solid curves correspond to the solutions for n = +, 1 and 2 and the dashed curves 
to the limiting solutions for n = 0 and n = GO. 

77, w 

2.3. The long-time solution 
The numerical solution shows that 

T, - k2Z2 (2.14a) 
as Z+ co, where k is a constant. From figure 2 we see that W = 0(1) except very close 
to the nose of the flow. Hence, if Z, - T1I2/k then T,- &. = O(T1I2/k)  6 T.  This 
suggests that we seek a solution to (2.4) and (2.6) of the form 

Z(T; Ts) = T y m / k ,  (2.14b) 
where 7 = k ( T -  Ts)/Til'. (2.144 
We write T = T, + O(T;") in (2.6b), note that f' = (n  + 1) dZ,/dT = 0(T i1 I2 )  at the 
nose and substitute (2.14) into (2.6) to obtain 

(2.15) 

subject to the boundary conditions 
f ( 0 )  = 0, f ' ( O >  = 1, f ( 7 N )  = 1, f ( 7 N )  = 0, (2.16a-d) 

where primes denote derivatives with respect to 7. Equation (2.15) has the first integral 

from which we can use (2.16) to obtain k = fn(n + 1). Thus 

2 T1I2 Z,-- 
n(n + 1) ' 

(2.17) 

(2.18) 

in agreement with the numerical results of figure 1 (b). The characteristic equation 
f' = {2cos-1 (f)/n}"""+l' 
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can be integrated analytically by the substitution v = 2 cos-' (f)/n (Gradshteyn & 
Ryzhik 1980, equation 2.632.2) and the solution and the asymptotic form of W are 
shown in figure 3 for a number of values of n. As n increases the dependence of dZ/dT 
on W becomes stronger and the effects of solidification are increasingly confined to the 
nose. Hence the decrease in W at the nose of the flow is sharper for laminar flows 
(n  = 2) than for turbulent flows (n  < 2). 

The dominant balance which gives rise to the long-term asymptotic behaviour is now 
clear. Nearly all of the input flux, which is constant, solidifies against the side 
boundaries. Since the rate of solidification decreases like T-'12 as the temperature 
gradient in the solid spreads, the length of the flow increases like TliZ to compensate. 
Just sufficient of the input flux reaches the nose of the flow to keep it open and 
propagating at the appropriate rate. The indefinite propagation of a constant-input 
flow contrasts with the finite distance of propagation of a fixed-volume release (Lister 
1994) and will be discussed in $5 .  

3. Constant-flux input above the liquidus temperature 
We have seen that if 0 = 1 then solidification proceeds along the entire length of the 

flow and no special treatment of the near-source region is necessary. If 0 < 1, however, 
then we would expect the continual supply of fluid at temperature 1 at z = 0 to lead 
to a region of wall melting near the source. The description of the near-source melting 
will be the focus of the analysis below since the far-field region of solidification is found 
to be similar to the liquidus solutions of the previous section. 

3.1. The solution at short times 
Shortly after the initiation of flow the temperature gradient between fluid and solid is 
confined to thermal boundary layers of width 6 = O(t1l2) at the margins x = +_ w of the 
flow. Since the centreline velocity is initially O( l), the boundary layers are subject only 
to velocities O(6) in the shear flow at the edge of the Poiseuille profile. Except very near 
the source of the flow, the along-stream scale of temperature variation is zN = O(t). 
Thus the ratio of advection to diffusion u6z/055 in (1.1) is O(t-1/2). Hence, if we 
calculate the rate of solidification by conduction alone then the associated error is of 
relative size O(t-1/2), Now when a semi-infinite body of fluid of initial temperature 
0 = 1 is placed in contact with a semi-infinite solid of initial temperature 6 = 0 at 
t = t,, the rate of solidification is given by 

Ct = h(S, 0 ) / ( t  - tN)1/2 (3.1) 
for t > t ,  (Carslaw & Jaeger 1959), where h(S, 0) is the root of 

Since 6 < w, the correction due to the finite width of the flow is negligible. Thus the 
perturbation analysis of 52.1 restricted to laminar flow (n = 2) is applicable to second 
order, and we again obtain (2.1 1) and (2.12). The location of the nose is given by 

where it is necessary to include the effects of advection on the thermal boundary layers 
to calculate the higher-order terms. 

Advection must also be included near the origin of the flow. For z < z N  the 
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0 
A 

FIGURE 4. The function G(A) = A J exp (Ay --$y3) dy which determines A in the steady near-source 
similarity solution (3.10) at short times from the condition G(A) = ( I  -O)/(S+O). The asymptotic 
approximations G - 3-ll3T(+) A + 31’3r(3A2 as A + 0 and G - ( 3 7 ~ ~ A ~ ) ) ’ / ~  exp [($A3)1/2] as A --f co are 
shown dashed. 

temperature profiles corresponding to the purely conductive approximation used 

( 3 . 4 4  

( 1  - 0) erfc if[ + A}  
erfc h 0 -  1 -  5 (5 2 01, (3.4 b)  

where 5 = (w - x ) / P  (see equation (4.3) of Part 1). At z = 0, however, we must apply 
the boundary condition 0 = 1 in f; > 0 from (1.13). It follows that there is a small 
region near the source in which the along-stream scale of temperature variation is 
much less than z N ,  B2 cannot be neglected and the temperature is matched from (1.13) 
to (3.4). Within this small region the curvature of the Poiseuille profile can be neglected 
and (1.3) written 
where x’ = w - x .  0,-c ,  0,,+x’0, = 05151 (x’ > O), (3.5) 

The lack of a lengthscale in (3.5) suggests that we seek a similarity solution of the 
form 

where 5 = X ’ / P ,  5 = Z/t? (3 -7) 
After making these substitutions, we need to solve 

(5-%w9., = (v+;oa9,++, (5 > 01, ( 3 . 8 ~ )  
-;sac = (v+&99,++, (5 < O), (3.8b) 

SV+[9J_f = 0,  (3.8 c) 
a(0,g = 0, ??(0O,Q = I ,  9(-0O,Q = 0, (3.8 d-f) 
a(5,o) = 1 (5 > 0) (3.8g) 

subject to the far-field condition that v+h and 9 asymptotes to (3.4) as 6- 00. Bruce 
(1989) derived similar equations for flow past a rigid wall, but neglected v in the 
equations corresponding to (3.8 a,  b) in order to obtain approximate analytic solutions. 

The far-field boundary condition (3.4) is determined by a balance between cross- 
stream diffusion and time dependence. As {-0, however, the flow must approach a 
steady state in which there is a balance between advection and diffusion. We see from 
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FIGURE 5 (a-c). For caption see facing page. 
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(3.7) that in a steady state 9 is a function of 7 = x'/z l i3  = </C1I3. Thus we substitute 
9 = 9(7) into (3 .8)  and let 5-0 to obtain 

( g ' l 3 ) 9  ?/ +9 77 = -1 39 2 6  7 (7 ' 01, 

S(D61'3) + [q' = 0. 

( 3 . 9 4  

(3.9c) 
( U P 3 )  9,[ +a7/, = 0 (7 < 01, (3.9b) 

The solution of (3.9) subject to (3.8d-g) is given by 

( 1  -O)rexp(Aq-t73)d7 
9(v) = 1- cc 'I (9 3 01, (3. I O U )  s,, exp(f+%I3)d9 

a(?) = OeA'/ (7 G 01, (3.106) 
u = (3 .10~)  

where A is given by 
1 - 0  exp (AT -;73) d?;, = - 
S+O 

(3.10d) 

The left-hand side of (3.104 is shown in figure 4.  
Thus (3.10) and (3.4) are the near-source (6 << 1) and far-field (5 3 1) solutions of 

(3.5). The near-source solution satisfies (3 .8~-g)  but not the far-field boundary 
condition (3.4). Conversely, (3.4) satisfies ( 3 . 8 ~ - f )  but not the source boundary 
condition (3.8g). That the full solution must satisfy both upstream and downstream 
boundary conditions is due to the variation in sign of the coefficient of 9, in ( 3 . 8 ~ ) :  
though the equation is parabolic, the time-like direction is + 6 in 5 > I6 and - 6 in 
6 < $(. Such bidirectional information transport in the heat equation is characteristic 
of flows propagating away from a source. 

The full solution of (3.8) subject to (3.4) was determined numerically using an 
adaptation of the scheme described in $4.3 of Part 1: a time-like derivative 9, was 
introduced in (3.8a, b), &derivatives were represented by Crank-Nicholson dis- 
cretization and L-derivatives by Lax-Wendroff discretization. The equations were then 
integrated with respect to T to a .r-independent state, which solves the original problem. 
The solutions for S = 0.05 and S = 5 with O = 0.55 are shown in figure 5(a, b). The 
temperature in the fluid region makes a fairly sharp transition from the near-source 
asymptotic (3.10) to the far-field boundary condition (3.4) near 5 = 1 and depends only 
weakly on the Stefan number. As S+ co the temperature in the solid region tends to 
the far-field error-function profile except within a small region of size 0(S3) near the 
source. In the limit S = 00 the solidification rate is zero, and hence the equations in the 
fluid and solid regions are decoupled and linear and can be solved by Laplace 
transforms (Appendix). 

Near the origin the flow is steady and the boundary-layer thickness increases 
downstream; far from the origin the boundary-layer thickness is independent of 
downstream distance, but is thickening like t l iz .  Since A > 0 if 0 < 1 and h > 0 if 
O > g, it follows that if < O < 1 then there is a transition point cT between melting 

FIGURE 5.  Contours of temperature 9 in the transient similarity solution (3.8) for the near-source 
short-time flow. The solution depends only on 6 as 5- m and on 7 = 5/c'3 as {+ 0. (a) S = 0.05 and 
0 = 0.55; (b) S = 5 and 0 = 0.55. (c) The solidification rate u shows a transition between near-source 
melting and far-field solidification if 0 > $. The transition points ( 0 )  are shown for 0 = 0.55 (solid 
curves) and 0 = 0.6 (dashed curves) and for S = 0.05 and S = 5 .  
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FIGURE 6. Contours of temperature 0 in the steady near-source long-time solution (3.13). The 
temperature of both the fluid and the solid tends to 0 as z +  co and ~-t[(Sfl)/(S+@)]’/~. (a) 
S = 1 and 0 = 0.5; (b) S = 0.1 and 0 = 0.25. Note the different vertical scale. (c) The melting rate 
-C (solid curves) together with the near-source and far-field asymptotic solutions -C = / 1 / ~ l ’ ~  and 
- C cc exp ( - p / w & )  (dashed). 
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(v < 0) in 5 < cT and solidification (v > 0) in 5 > cT (figure 5c). In the original 
variables the region of melting extends from the origin with zT cc t3iz. It should be 
noted that this whole picture is a local solution which applies for z -g zN and x' 6 w. 
For consistency with (3.7), we also require t -g 1. 

3.2. Long-time solution 
When t = O( 1) we can no longer use a match of the perturbation solution (3.3) to the 
near-source similarity solution (3 .Q and the original equations (1.1)-( 1.14) must be 
solved numerically. At long times ( t  9 l), however, the problem simplifies again and 
we may make further progress analytically. We have shown above that the solution of 
(3.5) becomes steady near the source in a region that grows like t3" at short times. This 
suggests that we seek a steady near-source solution to (l . lk(l .14) that is valid for 
t 9  1. 

Accordingly, we write the solidification rate ct (which is negative) as t ( z )  and set 
8, = 0 and wt = 0. From (1.1 b), (1.2) and (1.3) we obtain 

cox = ex, (x > w) (3.11) 

which has solution 0 = 0 ec(x-w) (x 2 w) (3.12) 

subject to the boundary conditions 8 = 0 at x = w and 8-0 as x+ co. Substitution 
into the remaining equations yields the system 

+(W2-x2)Bz  = sX,-(cx/w)8,, (x < w), (3 .13~)  
(3.1 3 b) 

c = e,-/(s+ 01, (3.13~) 

which is to be solved subject to the boundary conditions w = 1 and 8 = 1 at z = 0 and 
8 = 0 at x = w. The parameter space may be reduced by noting that the solution for 
the temperature in x < w takes the form 

8(x,  z ;  s, 0) = 1 - (1 - 0) F(x, z ;  s"), (3 .14~)  

w, = - c/ w2, 

where the effective Stefan number s" is given by 

s"= (S+@)/(1-0) (3.14b) 

andFsatisfies(3.13~), F = O a t z = O ,  F= 1 atx=wandF,-=s"-C. 
Equations (3.13) form a simple parabolic system, which is readily integrated from 

z = 0 using a Crank-Nicholson scheme for 8 and a Runge-Kutta scheme for w. Some 
solutions are shown in figure 6. For z 4 1 the solution asymptotes to the similarity 
solution (3.10). As z increases to O(1) the width of the thermal boundary layer in the 
fluid increases and occupies the whole channel. The temperature difference between the 
fluid and the liquidus decreases, as does the rate of melting --C, and hence the width 
of the thermal boundary layer in the solid increases rapidly. For z 9 1 the width of the 
flow tends to a constant value 

(3.15) 

and both the temperature excess of the fluid and the rate of melting (figure 6c) decay 
exponentially like exp (-pz/w",), where p is the rate of decay of the lowest eigenmode 
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Solution Equations Requirements 
Perturbation (3.3) P”2 < z < 1 
Error function (3.4) P”2 < z 6 t 
Unsteady similarity (3.8) z < t  
Steady similarity (3.10) z e t3’2,  1 
Steady entry-length (3.13) z < t 3 / 2  t”2 

Liquidus (3.17) 1 e z e tl’Z 

TABLE 1. The various asymptotic solutions and their domains of validity for constant-input laminar 
flows with 0 < 1. Between them the solutions provide a representation of the flow everywhere except 
when z and t are both O(1). 

of the standard, non-solidifying, thermal entry-length problem (Graetz 1885). Thus, as 
S or 0 decrease and the amount of melting increases, the effective thermal entry length 
increases like wk. 

It follows from the exponential decay of i. with z that the width of the boundary layer 
in the solid for a steady solution increases exponentially with z.  However, we know that 
the temperature in the solid is not steady near the nose of the flow and hence we expect 
the width of the boundary layer to be no more than O(tl/’). Comparison of the 
estimates of the boundary-layer width suggests that the transient solidification near the 
nose of the flow (0 > i) gives way to steady melting near the source at z = z T ,  where 

zT = O(wk In t/2p). (3.16) 

It remains to find the solution in z 9 zT. We observe that fluid leaves the region near 
the source with B = 0 and w = w, to within exponentially small corrections. Hence the 
solution in the distal region of the flow can be found by a rescaling of the long-time 
solution obtained in $2.2 for flows initially at the liquidus temperature. Let A* = A(S*) 
denote the solution of (2.2) evaluated at S* = S / 0 .  Then rescaling of (2.18) and use 
of (3.15) shows that 

2 s+ 1 t’/’ 
3 n s + 0  A * ’  ‘ N  ---- (3.17) 

Once again, we find that propagation continues indefinitely, though at an ever- 
decreasing rate. The asymptotic division of the long-time solution into a nearly steady 
near-source solution of (3.11) and a near-liquidus far-from-source solution of (2.6) is 
confirmed by numerical solution of the full system of equations. 

We conclude this section with a summary of the asymptotic requirements of the 
solutions derived (table 1). 

4. Time-dependent input with w(0, t )  = ta 
The foregoing analysis has shown that a flow fed by a constant flux will propagate 

indefinitely with a length asymptotically proportional to t l lz .  In contrast, an 
instantaneous release of a fixed volume will only propagate a finite distance before 
solidifying completely (Lister 1994). It is natural to ask, therefore, whether flows with 
a diminishing input flux would propagate for a finite or indefinite distance. Hence, we 
return to the case 01 =j= 0 in (1.14) and consider flows in which w(0, t )  = ta and the input 
flux is proportional to t3“ (or t(n+l)a in the turbulent case). Since much of the analysis 
is a simple extension of the methods developed above, we will focus on the results and 
suppress details of the derivations. 
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Consider first the case of fluid input at its liquidus temperature (0 = 1 )  and allow, 
for generality, the possibility of non-laminar flow (n =l= 2). The requirement that the 
volume flux be integrable as t + 0 limits the allowable values of a: to a: > - 1 / ( n  + 1 ) .  It 
is readily shown that the solution of (2.3) and (2.4) without solidification ( A  = 0) is 
given by 

(4.1 a) 

(4.1 b) 

z = w y t  - wlia), 

{n(na + 01 + l)]"" tna+l 
{ (n  + 1 )  (na + 1))lza+l ' 

ZN = 

When solidification occurs the equations can be rescaled to remove the solidification 
rate A by defining 

> 2 (4.2) = ~ ~ - 2 ( n a + 1 ) / ( 1 - 2 a )  = ~ , , - 2 a / ( 1 - 2 a )  t = 5 5 - 2 / ( 1 - 2 a )  

The width along characteristics is then given by 

(4.3) 

from which it is clear that solidification introduces an O(T1/2--a) correction to (4.1). 
Hence solidification can be analysed as a small perturbation if either a < f and T 4 1 
or a: > f and T p 1 .  We expect solidification to be dominant if the reverse inequalities 
are satisfied. To confirm this we seek a solution to (2.4) and (2.6a-c) analogous to 
(2.14). 

If solidification is dominant then the time for W to decrease from T" to near zero is 
O(Ta+ll2). During most of this time Wis O(T") and hence (aZ/aT)# is O(T""). Thus the 

Motivated by these scalings, we set 
distance propagated along a characteristic during solidification is O( Tna+a+1/2 1- 

TN = (kZ)l/y, kZ( T ;  Ts) = Q f ( r ) ,  (4.4a, b )  
where 7 = k(T-  Ts)/TE+1/2 and y = (n+ l )a+t .  (4.4c, d )  

Provided y > 0 so that T N  is an increasing function of Z then substitution of (4.4) into 
the characteristic equations and neglect of terms of O(Ta-1/2) yields 

kf"/n(f')'-l/" = - 1 /( 1 - f l ' y ) l ' Z  (4.5a) 
f(0) = 0, f'(0) = 1 ,  f ( 7 N )  = 1, f l ( 7 N )  = 0. (4.5b-e) 

From the first integral 

and the boundary conditions we find that 

where B denotes the beta function 

(4.6a) 

(4.6b) 
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FIGURE 7. The propagation of a variable-input laminar flow at the liquidus temperature (n = 2 and 
0 = 1) for the case (r = -a. (a) The location of the nose Z ,  (solid curve) together with some of the 
characteristics (dashed) used to determine the solution and two asymptotic results (dotted). The nose 
of the flow freezes completely at N so that W, > 0 along ON and W = 0 along NS. (b) The source 
flux decreases sufficiently rapidly that initial advance in which solidification is negligible and 
Z ,  = 2($T)1'2 gives way to a long-time retreat of the flow in which solidification is dominant and 

(solid curves) and accumulated chill thickness C (dashed) as a function of vertical distance Z at 
various times together with the chill thickness C,  left by the receding flow (long dashed). The width 
decreases monotonically with time due to both the waning source flux and the effects of solidification. 

Z = AT-114 . The asymptotic solutions (4.1b) and (4.8) are shown dotted. (c) The scaled width W 
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Since the neglected terms are of O( Ta-liZ), this solution describes the asymptotic 
behaviour for T 9 1 if a < f and for T 4 1 if a > f .  

If y < 0 then the expected long-time asymptotic form (4.46) of TN is a decreasing 
function of 2. At early times, however, the flow was advancing according to (4.1 6) and 
it is this increasing value of TN that should be used in (2.66). Thus the substitution of 
(4.4) now yields 

kf"/n(f')l-lln = - 1 (4.7) 

since T, 9 TN, and it is readily shown that 

Two critical values of 01 are apparent from this analysis. First, the propagation of 
the flow makes a transition from 2, cc T""+l and negligible solidification to 
z N cc Tna+a+l/2 and dominant solidification when T = O(1) (figure 7a,  b), but the 
direction of the transition depends on whether a < f or a > 4. Secondly, in the 
solidification-dominant regime propagation will only continue indefinitely if 
2a > - 1 / ( n  + 1 )  corresponding to ( y  > 0). If 2a < - 1 / (n  + 1) then the nose of the flow 
solidifies completely at some maximum distance of propagation Z,,, when T = O( 1) 
and the region of active flow diminishes and is more closely confined to the source 
(figure 7c). Thus this second critical value of a is, in some sense, the marginal case 
between the indefinite propagation of a constant-flux release and the finite propagation 
of a constant-volume release. 

We turn now to the more general case of fluid input with some superheat (0 < 1 )  
and restrict attention once more to laminar flow (n = 2). As before, the superheat is 
only significant near the source of the flow, and far from the source the solutions for 
0 = 1 can be rescaled to describe the flow. The shear rate in Poiseuille flow is 
proportional to w and hence the linear shear experienced by the thermal boundary 
layer at the edges of the flow near the source varies like ta. A similarity solution 
analogous to (3.8) can be found, which shows that the transition between solidification 
and melting now extends away from the source like P3". This solution is appropriate 
for T 4 1 if a < $ and for T 9 1 if 01 > $. The thermal entry length for Poiseuille flow 
is proportional to w4. In the solidification-dominated regime a similarity solution can 
thus be found for the near-source flow in which the fluid loses its superheat over a 
length proportional to t4a. This solution is appropriate for T 9 1 if a < f and for 
T g l i f a > ; .  

5 .  Discussion 
There are many natural and industrial processes in which solidification of a hot flow 

in a cold environment plays an important role. In this paper we have focused on the 
case of continual input between freely deformable boundaries and found, as discussed 
below, that both the input and the deformability have significant effects on the 
behaviour of the flow. 

A variety of asymptotic solutions have been obtained, which shed light on the 
structure of the flow at long and short times, both near and far from the source. The 
scaled solutions are characterized by the Stefan number S, the dimensionless 
solidification temperature 0 and the source flux. If the source flux (in laminar flow) is 

3 F L M  212 
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proportional to t3" then, in the absence of solidification, the distance propagated by the 
nose of the flow is proportional to t2a+1. If a: < g and 0 > (or 0 < i) then the initial 
effects of solidification (melting) are small, the thermal contrasts are confined to thin 
boundary layers and the position of the nose is retarded (advanced) by an amount 
proportional to taf3/'. If 0 < I then the continual supply of superheated fluid prevents 
the boundary layer in the fluid near the source from thickening with time and causes 
rapid melting in a near-source region which initially extends in length like 
However, the superheat of the fluid input is eventually lost to lateral conduction and 
latent heat over a thermal entry length proportional to t4", which is attained when t and 
z ,  are O(1). At larger times the temperature within the thermal entry length 
approaches a quasi-steady solution (in scaled coordinates) with melting of the 
sidewalls, while far beyond the thermal entry length the fluid is at its liquidus 
temperature and solidifies at a rate proportional to ( t  - tN)-1 /2 .  The propagation of the 
nose slows to t3a+1/2 and nearly all the fluid supplied solidifies against the sidewalls. This 
whole sequence of behaviour is simply reversed if the source flux increases with a: > i. 

A number of contrasts can be drawn with the evolution of an instantaneous release 
of fixed volume. Firstly, the near-source structure of the solutions is significantly 
different. Whereas the narrow width at the base of a constant-volume flow leads to a 
near-source region of complete solidification proportional to t 2 ,  a continual input leads 
either to the absence of any special behaviour near the source (0 = 1) or to a near- 
source region of melting (@ < 1). This is an important result for geological applications 
since melting of the boundaries corresponds to contamination of the original magma 
by host rock, which may be of quite a different composition. In this context we note 
that the amount of contamination relative to the original melt approaches 
(1 -0 ) / (S+@)  from (3.15). Secondly, whereas a constant-volume flow ceases to 
propagate and solidifies completely after a finite time and distance, a flow with 
constant input will continue to propagate indefinitely, though at an ever decreasing 
rate. Thirdly, the spatial and temporal pattern of solidification and melting is much 
simpler for the case of continual input since it consists only of melting near the source 
and solidification beyond a certain time-dependent distance. 

It is perhaps unexpected that a constant-input flow is found to propagate indefinitely. 
Some insight into this result may be gained by noting that the condition for indefinite 
propagation is a: > --; or, equivalently, that the source flux decays no more rapidly 
than t-1/2. If a flow attains a fixed or decreasing length then, since the width of the 
diffused thermal anomaly in the solid is O(t112)>, the total rate of solidification is O(t-'12). 
Hence, propagation will continue if the source flux is greater than O(t-l12). The sources 
of magma at the base of the lithosphere are often envisaged as spongy regions of partial 
melt, while near-surface dykes and lava flows may be fed from inflated chambers of 
magma. In each case, we expect that the flow rate will decrease as the source region is 
progressively drained by the flow. This observation coupled with the condition for 
continued propagation suggests that a decrease in source flux may be the critical factor 
in determining the duration and extent of geological flows. 

It should be noted, however, that some of the assumptions underlying the model 
equations (l.lk(l.14) may need to be reassessed at very large times. For constant- 
input currents the neglect of elastic stresses in the flow walls in comparison to the 
buoyancy forces remains valid on the scale of the flow since both zN and c increase like 
P I 2 .  The chief qualification to the long-time behaviour is thus likely to be that the 
assumption of large PCclet number must eventually break down locally at the nose of 
the flow when w, and i, are sufficiently small. In this regime we must extend the 
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description of the nose as a frontal shock governed by heat and mass conservation and 
reintroduce the effects of non-parallel flow and along-stream conduction. Extensive 
chilling near the forward stagnation point may then be sufficient to stall propagation, 
though further modelling is required to investigate this possibility. 

The results obtained for flow in a conduit with freely deformable walls should be 
compared with those from previous studies of flows in a rigid-walled conduit (Delaney 
& Pollard 1982; Bruce & Huppert 1990) in which solidification against the walls 
reduces the width of the flow and hence the flow rate. Though the methods used to 
calculate the flow reduction are somewhat approximate in both these studies, there is 
no reason to question their conclusion that a rigid-walled flow will always choke and 
solidify if it exceeds a certain multiple of the thermal entry length. The deformability 
of the boundaries in the present study plays an essential role since it allows the chill to 
be displaced laterally and flow to continue if sufficient flux is arriving from below. 

It would be of general fluid-mechanical interest to extend these calculations to other 
flow geometries. Generalizations appropriate to lava flows with convective or radiative 
cooling terms (Fink & Griffiths 1990) were described in Part 1. Alternatively, if the 
melting temperature of the boundaries were greater than the initial temperature of the 
fluid then the long-time solution would be a constant-velocity travelling wave of scale 
given by the thermal entry length and behind which both fluid and solid were close to 
the input fluid temperature. Finally, it would be of particular geological interest to 
consider buoyancy-driven flows of finite lateral extent (Lister 1992) and to investigate 
the channellization of the flow by solidified ‘levees’ at the lateral margins of the flow 
where cooling is most rapid. 

I am grateful to R. C. Kerr and H. E. Huppert for constructive comments on an 
earlier version of this manuscript. 

Appendix. The temperature in shear flow past a cold wall 
Consider a linear shear flow u = (0,x) in x > 0 and z > 0 past a wall at x = 0. For 

convenience, we reverse our usual temperature scale and let the initial temperature of 
the fluid be 0 = 0 with the wall maintained at temperature B = 1 and the fluid supply 
at temperature 0 = 0. Solidification, melting and along-stream conduction are not 
considered. We are thus required to solve 

Bt + xo, = Bz,, 

B(x, z ,  0) = 0, B(x, 0, t )  = 0, 

8(0,2, t )  = 1, B(co,z, t )  = 0. (A 2c, d )  
Equations (A 1) and (A 2) occur as the limit of (3.8) when solidification is negligible 
( S  $ 1) and describe the near-wall (x’ 4 w), near-source ( z  4 z N ) ,  short-time ( t  4 1) 
solution of the problem defined by (1.1)-( 1.14), which forms the main focus of the body 
of this paper. However, the problem posed by (A I)  and (A 2) will occur generically in 
other heat-transfer problems. 

As described by Bruce (1989), (A 1) may be solved by taking Laplace transforms 
with respect to t and z to obtain 

(A 3) (s +px) e = 8,., 
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where e(x,p, s) = j j  8(x, z ,  t )  exp ( - p z  - s t )  dz d t .  The solution of (A 3) that satisfies 
the boundary conditions (A 2) is given by 

Ai + xpli3) 
sp Ai ( S P - ~ I ~ )  ' 8(x, P ,  s) = 

where Ai denotes the Airy function. The self-similar structure of the solution is 
revealed by making the substitutions 

5 = xt-112, < = ,t-3'2, $ = pt312, g = st (A 5 )  
to obtain the inversion integral 

where the contours of integration lie to the right of the poles of the integrand. 
Integrating with respect to g, we find that 

27ci8(5, Q = s$-' Ai (5$'/3) exp ($0 d$ 

+ C {ai Ai' (a,)}-' 4-l Ai (ai + @1/3) exp ($[+ai $2/3) d$, (A 7) 

where a, are the zeros of the Airy function and the contours of integration lie to the 
right of the branch cut on the negative real axis. The first integral in (A 7) can be shown 
to be equal to the doubly self-similar near-source solution (3.10), but the remainder do 
not appear to be tractable analytically. Numerical solutions are, of course, available as 
described in Q 3.1. 
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